SERIES WORKSHEET 2

Problem 1. Find the radius of convergence and the interval of convergence (for (6) and (8) just the

radius sufﬁces).

'$n (k € Z>0).

= " (x —2)" >
0y e Z ) SvaTTe
B> 0> Ny Spy:

ot “— nen’ — (2n+1)
o~ _(2n) in ow tha 2) _ gy (20! 3 1
(5) ; S (n)) (Hint: Show that ( " ) = (—4) (n!)Q)’ (6) ; @)

o~ (="
MY G
o (2n+1)3
Problem 3. Express the given functions as power series centered at 0.
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Problem 4. Suppose f(z) =
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Z ay. Use this to compute the following sums:
n=0

n+1 n+1

n—l'

(oo} oo
Problem 5. The Bernoulli numbers B,, are defined by the power series expansion
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Compute B,, for n = 0,1,2,3,4,5,6. Show that

whenever n > 1 is odd.

E anxz™ has radius of convergence 1 and E an converges.

Abel’s

z 1 + g is even and hence deduce that B, = 0
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Problem 6. Recall that the Fibonacci numbers are defined recursively by Fy =0, F} = 1 and F,, 12 =
Foi1+ F, for n > 0. We can use power series to derive the explicit formula for F,, as follows. Let
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(1) Use the recurrence relation and the initial conditions for F,, to deduce f(z) = pop—
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for suitable numbers
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(2) Use partial fraction decomposition to write f(z) as f(x) =
A7 B’ a’ B'
(3) Use the expression found for f in (2) and the geometric series to deduce
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by comparing coefficients.

Problem 7. Use the first order Taylor polynomial and its error bound to show the error bound for the
midpoint rule (Hint: First consider one interval [z, x1]. Using the Taylor inequality for |f(z) — T1(z)|
T1 A 3M
f(z)dr — Axf(z7)| < % where M is a bound for |f”|. Then add up all the
error terms for the individual intervals [, Tiy1] to get the error bound on [a, b]).

show that
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