
SERIES WORKSHEET 2

Problem 1. Find the radius of convergence and the interval of convergence (for (6) and (8) just the
radius suffices).
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Problem 2. Compute the values of the sums:
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Problem 3. Express the given functions as power series centered at 0.
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Problem 4. Suppose f(x) =
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Problem 5. The Bernoulli numbers Bn are defined by the power series expansion

x

ex − 1
=

∞∑
n=0

Bn

n!
xn.

Compute Bn for n = 0, 1, 2, 3, 4, 5, 6. Show that
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is even and hence deduce that Bn = 0

whenever n > 1 is odd.
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Problem 6. Recall that the Fibonacci numbers are defined recursively by F0 = 0, F1 = 1 and Fn+2 =
Fn+1 + Fn for n ≥ 0. We can use power series to derive the explicit formula for Fn as follows. Let
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(1) Use the recurrence relation and the initial conditions for Fn to deduce f(x) =
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(2) Use partial fraction decomposition to write f(x) as f(x) =
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A,B, α, β.

(3) Use the expression found for f in (2) and the geometric series to deduce
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by comparing coefficients.

Problem 7. Use the first order Taylor polynomial and its error bound to show the error bound for the
midpoint rule (Hint: First consider one interval [x0, x1]. Using the Taylor inequality for |f(x)− T1(x)|

show that
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where M is a bound for |f ′′|. Then add up all the

error terms for the individual intervals [xi, xi+1] to get the error bound on [a, b]).
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